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ON THE ISOMORPHISM PROBLEM FOR CENTRAL
EXTENSIONS I

NOUREDDINE SNANOU

ABSTRACT. Let G2 be a group which acts trivially on an abelian group
G1. As is well known, each perturbed direct product of G; and G»
under a 2-cocycle ¢ € Z?(Go,G1) determines a central extension of G4
by G2. The purpose of this paper is to study perturbed direct products
of groups and to decide in some cases how the isomorphism of these
groups can be decided. Furthermore, we show that the study of the
isomorphism of perturbed direct products of an abelian torsion group
and a finite group is reduced to the study of the isomorphism of p-
subgroups. We characterize such isomorphisms in various situations
with some assumptions on the quotient group.

2020 MATHEMATICS SUBJECT CLASSIFICATION. 20J05, 20J06, 20E22.

KEYWORDS AND PHRASES: central extension, G-isomorphic, upper iso-
morphic, A-isomorphic, c-isomorphic.

1. INTRODUCTION

Deciding the isomorphism of two given groups or even classifying all
groups in a certain class is one of the most classical and challenging prob-
lems in group theory. The classification of finite simple groups is the first
step of the Holder program which gives us a complete list of finite simple
groups [1]. A group G that is not simple can be broken into two smaller
groups, namely a nontrivial normal subgroup G; (the kernel group) and the
corresponding quotient group Go = G/G1. This is equivalent to say that G
is an extension of G; by Go. In particular, if G is a central subgroup of G,
then we say that G is a central extension of G by Ga. The question of what
groups G are extensions of G; by G» is called the extension problem and
this is the second step of the Holder program. The solution to the extension
problem would give us a complete classification of all finite groups. But, it
is not easy to solve this problem, and no general theory exists which char-
acterizes all possible extensions at one time. However, for group extensions
with abelian kernel, an answer to the extension problem has been given by
Holder and Schreier by using the group cohomology, but it has some con-
siderable disadvantages [10, Theorem 7.34]. In fact, this answer does not
allow us to compute the number of non-isomorphic extensions of G; by Gs
(the isomorphism problem). Very recently, we study in [12] the isomorphism
problem for split extensions. In [11, 13], we characterize the isomorphism
problem for non-split abelian extensions. In fact, most of the results of those
studies do not concern general isomorphisms, but only those of certain type,
namely leaving one of the two factors or even both invariant. The aim of this
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paper is to give a further contribution to this topic. More precisely, we com-
plete the work with the isomorphism problem for central extension in other
special cases. We mainly deal with isomorphisms inducing the identity or a
commuting automorphism on the quotient group. Further, we show that the
study of the isomorphism of central extensions of an abelian torsion group
by a finite group is reduced to the study of the isomorphism of p-subgroups.
In this direction, we characterize such isomorphisms in various situations
with some assumptions on the quotient group.

Let G be a group. As usual we denote by Z(G), G’ and Aut(G), respec-
tively, the center, the derived subgroup, and the automorphism group of G.
If G is finite, then 7(G) denotes the set of prime divisors of the order of G.

2. PRELIMINARIES AND PROPERTIES

Let G2 be a group which acts trivially on an abelian group Gi. A nor-
malized 2-cocycle of Gy with coefficients in G is a map € : Go X Gy — G
satisfying the following two conditions:

(1) e(g,1) = e(1,9) =1 forall ge Gs.
(2) e(h,g)e(hg, k) = e(g,k)e(h,gk) forall g, h k€ Gs.

The condition given by the equation (1) is called the normalization con-
dition, and the condition given by (2) is referred to as the 2-cocycle con-
dition. The set of normalized 2-cocycles of Go with coefficients in Gy is
an abelian group and denoted by Z2(Gs,G1). The trivial 2-cocycle is the
2-cocycle ¢ with ¢(g,h) = 1 for all g,h € G3. Note that the elements
of Z%(Go,G1) are known by factor sets in many books, (see for example
[3, 8, 10, 14]). The set of all normalized 2-cocycles which are symmet-
ric forms a subgroup of Z%(Ga,G1) and denoted by SZ?(Ga,G1). A 2-
coboundary of Ga with coefficients in G is a map ¥ : Gy X G2 — G
satisfying that for all y,9' € Ga : ¥(y,y') = n(y)n(yy)"'n(y’) for some
n : Go — G1. The set of 2-coboundaries of Gy with coefficients in G7 is
a subgroup of Z2(Go,G1) and denoted by B?(G3,G1). The corresponding
factor group H%(Ge,G1) = Z%(G2,G1)/B?*(G2,Gy) is called the second co-
homology group of Go with coefficients in G7. The elements of H?(Ga, G1)
are called cohomology classes. The cohomology class of ¢ € Z2(G5, G1) is
denoted by [¢]. Two normalized 2-cocycles are said to be cohomologous if
they lie in the same cohomology class.

Let 1 » G1 = G 2 G5 — 1 be a short exact sequence of groups, i.e.,
an extension of a group G by the group G2 = G/G1. If Gy is a central
subgroup of G, then such an extension is called a central extension of GG; by
G2. We refer to 7 as the kernel group, and G as the quotient group for the
extension. The Schreier’s theorem says that the central extensions of G by
G5 are classified by the non-trivial elements of the second cohomology group
H?(G,G1) with coefficients in Gy [10, Theorem 7.34]. Split extensions
correspond to the trivial equivalence class of H?(G2, G1).

Let G2 be a group which acts trivially on an abelian group G;. It is
well known that each perturbed direct product of G; and Gy under a 2-
cocycle ¢ determines a central extension of Gy by Ga. Let ¢ € Z%(Ge,G1),
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the perturbed direct product of G; and G2 under ¢ is defined as the group
G X Go with underlying set G; x G2 and operation given by
€

($7 y) E ($/7 y/) = (IL’IL’/{:'(y, y/)v yy/)

for all z, ' € Gy and y, ¥’ € G5. The converse is also true, then each central

extension G of G; by G is isomorphic to a perturbed direct product of Gy

and Gy, namely G = G x G for some € € Z2(Go,G1) [11, Proposition 2.3].
g

We can easily see that the perturbed direct product G x G4 is abelian if and
15
only if Gg is abelian and € € SZ2(Gg7 G1). In particular, we have G X Gy =

G1 x Gy if and only if € is the trivial 2-cocycle. But, it is possiblé for a

direct product to be isomorphic to a perturbed direct product as Remark

2.2 shows. In particular, suppose that G; and G2 are abelian groups and &

is non-symmetric. So GG1 X G2 is non-abelian and then G x Go 2 G1 X Gas.
€ g

Furthermore, we have

Proposition 2.1. Let Gy be a finite abelian group and Go a finite group
and let € € Z2(G2,G1). If SZ2(G2,G1) = {1}, then G1 X G2 = G1 X G2 ’Lf
g

and only if e = 1.

Proof. The if direction is clear. Conversely, suppose that € # 1, by using

the 2-cocycle condition, we get [(z,y), («/,¢/)] = (e(y,¥)e(¥',9) ™" [y, ¥'])

for all (z,y), (z/,3') € G1 X Ga. So, (G1 X G2)' = H. x G} such that ¢ =
€ € gl

TeSGYy Gl (¢) and H. is generated by the elements of the form (y, 3/ )e(y, y') ~*

where y, ¢ € G9. By assumption, we have H, is a nontrivial subgroup of
G1. But, (Gy x GQ)/ = G’z which implies that G; x G 2 G1 X Ga, as
g

required. (|
Remark 2.2. Lete € Z%(G2,G) and G = G1 x Gy be a finite group. Under
€

some conditions on Gy and G, the group G can also be decomposed as a
direct product of G1 and Go. Indeed, by [7, Proposition 2.1.7], G' N Gy is
isomorphic to a subgroup of the Schur multiplier M(G/G1) of G/G1. So if
|G1| and |M(G2)| are coprime, then G' N G1 = 1. Further, if Gy is perfect,
then so is G/G1. Hence G/G1 = G'G1/G1, which implies that G = G'G.
Thus, G = G' x G1 and then G = G1 x Go.

Now, in view of the preceding discussion, the following problem seems
natural.

Problem 2.3. Find necessary and sufficient conditions on &1 and €9 under
which the central extensions G1 X Go and G1 X Go are isomorphic.
€1 £9

To begin, let 1, g2 € Z?(G2, G1) and ¢ a group homomorphism from G x
e

Gs to Gy >< Go. Let pr; : Gy >< G2 — G be the ith canonical projection and

Gy — G1 >< G5 be the ith Canonlcal injection. Set ¢;; = pr;opot;, where

1 <4,j <2. So we can write ¢ in the matrix form: ¢ = < Yn Y12 >

P21 P22
Furthermore, we have the following lemma which we need in the sequel.
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Lemma 2.4. [11, Lemma 3.1] Let ¢ = ( ZH 512 > be a group homomor-
21 P22
phism from G1 x Go to G1 X Go. Then
€1 €2

(3)  e(z,y) = (pr(@)pr2(y)e2(p21(z), p22(y)), wa1(x)p22(y))
for allx € Gy, and y € G,.

3. ISOMORPHISMS INDUCING THE IDENTITY ON THE QUOTIENT GROUP

Definition 3.1. The perturbed direct products G1xGe and G1 X Gs are called
€1 €2

Go-isomorphic if there exists an isomorphism ¢ = ( ill 512 ) between
21 P22

them such that pa = idg,.

In the following, we give an interesting result for a special class of non-
nilpotent quotient groups, namely for those that have trivial center.

Proposition 3.2. Let Go be a centerless group which acts trivially on an
abelian group Gy. The perturbed direct products G1 x Ga and G1 x Gy are
€1 €2

Go-isomorphic if and only if there exists o € Aut(G1) such that (0051)551 €

B?(Gy,Gy).

Proof. Suppose that the perturbed direct products G; X Gy and G1 x Go
€1 €2

Y11 P12

w21 tda,
are group homomorphisms, so is ¢21. Furthermore, we see that o(z,1) e
€2

are isomorphic by an isomorphism ¢ = < ) Since pro and t;

o(l,y) = ¢(1,y) . ©(x,1). So by applying formula (3), we get a1 (2)y =
ypo1(x) for all © € Gy, and y € Gy. Thus, we have p91 € Hom(G1, Z(G3)).
Since G is centerless, it follows that ¢21 = 1. Hence, by [13, Theorem
3.7], there exists 0 = @11 € Aut(Gy) such that (o oey)ey’ € B%(Ga,G1).
Conversely, since (o o e1)e; ! € B?(G2,Gy), it follows that there exists a
map 7 : G — Gy such that ((o 0 e1)e5 ) (y,y") = n(y)n(y)n(yy')~* for all
y, ¥ € Go. By the normalization condition, we have n(1) = 1. So, the
bijection ¢ defined by ¢(x,y) = (o(x)n(y), y) is clearly an isomorphism.
As required. a

Let G1 be an abelian torsion group, i.e. all elements of G are of finite
order. Then G is a restricted direct product of all p-components G, where
p runs through the set of prime numbers. Let G2 be a finite group which
acts trivially on G and € € Z2(Go,G1). Let ©(G2) = {p1,p2,...,pr} and
Go; be a Sylow p;-subgroup of Gy for each 1 < i < k. Clearly, we have
gi = resg,, () € Z2(Gai, G1). So, in view of the previous preposition, we
get the following result.

Theorem 3.3. Keep the preceding notations and assumptions and suppose
that G4 is centerless. The perturbed direct products G1 >< Gy and G4 >< Gy are

Ga-isomorphic if and only if G1p1 >< Gzz and G1p, >< Gzl are Go;- zsomorphzc
foralll1 <i<k.
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Proof. Suppose that the groups G; x Gy and G x G2 are Ga-isomorphic.
€1 €2

By Proposition 3.2, there exists ¢ € Aut(Gp) such that (o o e1)e;! €

B%(Ga,G1). So resgy,((0 0 e1)eyt) € B%(Gai, Gy). Since Go; is a pi-

group and G is torsion, by [6, Lemma 1.5], it follows that H?(Ga;, G1) =

H?(Gy;, Ghyp,). Further, we have 0; = resg,, (p11) € Aut(Grp,). So (i 0

511)62_1-1 € B%(Gai, G1p,;), which implies necessity. Conversely, suppose that

Gip, x Go; and Gip, X Go; are Gai-isomorphic for all 1 < 7 < k. So
€14 €2i

by Proposition 3.2, there exists o; € Aut(Ghp,) such that (o; o 511-)52_2-1 €
B%(Ga;,G1p,;) for each 1 < i < k. So 0 = (07)1<i<k € Aut(G1) and then
resgy, ([(0 0 e1)ex!]) = 1 in H?(Gai,G1p,). Apply the corestriction map
coresa,, : H*(Gai,Grp;) — H?*(Ga,Gip;). Then by using [15, Corollary
2.4.9], we get [(0 0e1)ey ]G G2l =1 for all 1 < i < k. Hence, the order of
[(oo 51)551] is coprime with all elements of 7(G3). But, by [15, Proposition
3.1.6], we have H?(G2,G1)I%?l = 1, which implies that [(0 0 e1)e;!] = 1 in
H?(G2,G1), as required. O

Definition 3.4. Let H be a subgroup of G1. The perturbed direct products
G1 x G9 and G1 x Gy are called (H,G2)-isomorphic if there exists a Ga-
€1 €2

isomorphism ¢ = < P P12 > between them such that ©11/H = idy.
P21 ida,
Proposition 3.5. Let Go be a group which acts trivially on an abelian group
G1. Let H = Im(e1). The perturbed direct products G1 x Go and G1 X G
€1 €2

are (H, Ga)-isomorphic if and only if 616;1 € B%(Gq,GY).

Proof. Indeed, if the perturbed direct products G; x G35 and G x G are

€1 €2

(H, G2)-isomorphic, then there exists an isomorphism ¢ = P v
P21 ida,

such that @91 € Hom(G1,Z(G2)) and ¢11/H = idy. So, evaluate the left

hand side and right hand side of the equality p(1,y) e p(1,3') = v(e1(y,v'), yy'),
€2

we obtain

(1) parer(y,¥))yy = yy',

(2) enle(y,y)e2(yy)e2(pa ey, ¥)), vy') = er12(y)e12(y)e2(y, ).
The first equality implies that Im(e1) < Ker(pa1). So the second equality
gives us

er1(er(y, ¥))e2(y, ")~ = pra(y)era(y)era(yy')

Thus (p11 © 51)551 € B?(G3,G1) and therefore 51651 € B?(G3,G1) since
p11/H = idg. The proof of the converse is clear and similar to the proof of
the converse of Proposition 3.2 and then it is omitted. g

Using the preceding proposition, the proof of the following result is similar
to the proof of Theorem 3.3 and then we omit the details.

Theorem 3.6. Let G be a finite group which acts trivially on an abelian

torsion group Gi. Let H = Im(e1) and H; = Im(ey;) for all 1 < i < k.

The perturbed direct products G1 x Gy and Gy X Gy are (H, G2)-isomorphic
€1 £2
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if and only if Gip, x G2; and Gip, x Ga; are (H;, Goi)-isomorphic for all
€14 €24
1<i<k.

4. ISOMORPHISMS LEAVING THE KERNEL GROUP INVARIANT
We need the following definition.
Definition 4.1. Lete1, e2 € Z%(Ga,G1). The perturbed direct products G1 ><
Go and Gy >< G are called upper isomorphic if there exists an zsomorphzsm

p: Gy >< G2 *) Gy >< G leaving Gy invariant.

The following lemma can be viewed as an immediate consequence of [13,
Theorem 3.7].

Lemma 4.2. The perturbed direct products G1 x Go and G1 x Gy are iso-
€1 €2

morphic by an isomorphism ¢ = ( <‘0111 i;Q > if and only if 11 € Aut(G1)

and @22 € Aut(Ga) such that
(pr10e1)(e3 " o (w22 X 22)) € B*(Ga2,Gh).

With the notations and assumptions that preceded Theorem 3.3, we have
the following.

Proposition 4.3. Let G2 be a cyclic group which acts trivially on an abelian
torsion group Gyi. The perturbed direct products Gi >< Gy and G4 >< Go

are upper isomorphic if and only if Gy, >< GQZ and Glp x Go; are upper
€24
isomorphic for all 1 <i < k.
Proof. Indeed, by [13, Proposition 3.11], the groups G x G2 and G1 X G
€1 £€2

are upper isomorphic if and only if there exists ¢ € Aut(Gp) such that
(coe1)ey ' € B%(G2,Gy). Thus, using the same arguments as those used in
the proof of Theorem 3.3, we get the required result. O

If G is a group and g € G, we will write 4 for the inner automorphism
determined by g, i.e. 7, maps an element x to grg L.

Theorem 4.4. Let Go be a group which acts trivially on an abelian torsion
group Gy. If the perturbed direct products G1 X Go and G1 X Go are upper
€1 €2
isomorphic, then Gip, X Go; and Gip, X Go; are upper isomorphic for all
€14 €24

1<i<k.
Proof. Indeed, if the groups G1 x G and G1 X G are upper isomorphic,
€1 &2

P11 P12
1 o
them such that p11 € Aut(G1) and @92 € Aut(G2). Since Ga; € Syly, (G2),

it follows that SDQQ(GQ»L') = giGQigi_l for some g; € Gy and then (’Yg_—l o
©22)(Gai) = Go;. Therefore p; = TeSGQi('yg.—l 0 a2) € Aut(Ga;). Further, we
have o; = resa,, (¢11) € Aut(Gip,) since G is torsion. Now, by a simple

then by Lemma 4.2, there exists an isomorphism ¢ = > between
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P11 %2
L @by

and ¢15(y) = era(y)e2(g; ', 9i) "ealg; s a2(y))ealg; a2 (y), gi) for all y €
(2. Hence, the groups Gi >< Go and G X Gy are lower isomorphic by

€2
the isomorphism ¢’ = 'th(gi) 1 0 . Therefore, by Lemma 4.2, we have

calculation, we get vy,(g)-1 0 ¢ = ( >, where 9032 = Vgt © P22

1

(p11061)(e5 " 0 (phy X ©hy)) € B*(Ga, G1). Thus, by applying the restriction
map resg,;, we get (aioali)(agil o(pi x pi)) € B%(Gai, G1p;). This completes
the proof. 0

In particular, if G is a finite nilpotent group, then the converse of the
preceding result holds, as shown in the following proposition.

Proposition 4.5. Let Gy be a finite nilpotent group which acts trivially on
an abelian torsion group Gy. Suppose that Gy, >< Ga; and Gy, >< Go; are

upper isomorphic for all 1 < i < k. Then, the perturbed dzrect products
Gy >< G2 and Gy >< G2 are upper isomorphic.

Proof Indeed, if Glp >< Go; and Gy, >< (i9; are upper isomorphic, then

by Lemma 4.2, there 0X1st o; € Aut(Glpz) pi € Aut(Ga;) such that (o; o

e13) (g5 © (pi % pi)) € B%(Gai, G1p,). Since Go is nilpotent, it is the direct
product of its Sylow subgroups and then p = (p;)1<i<i € Aut(G2). Further-
more, we have 0 = (0;)1<i< € Aut(G1). Thus, we have resg,,[(coe1)(g5" 0
(px p))] = 1in H%(Gai, G1p,). The rest of the proof is similar to the second
part of the proof of Theorem 3.3, and so is omitted. O

5. ISOMORPHISMS INDUCING A COMMUTING AUTOMORPHISM ON THE
QUOTIENT GROUP

Let G be a group. An automorphism p of G is called a commuting
automorphism of G if for each z € G, p(r) commutes with z. The set
of all commuting automorphisms of G is denoted by A(G). The group
Auto(G) = Cauyq)(G/Z(G)) of central automorphisms of G is always a
subset of A(G).

Definition 5.1. The perturbed direct products G1xGs and G1 X Gs are called
€1 €2

Y21 P22
them such that pao € A(Gs). In particular, if oo € Aut.(G2), then the
groups G1 x Go and G1 X Go are called c-isomorphic.
€1 £92

A-isomorphic if there exists an isomorphism @ = < LA ) between

Proposition 5.2. Let GG be a centerless perfect group. Then, the perturbed
direct products Gy >< Go and G >< G are A-isomorphic if and only if there

exists o € Aut(Gl) such that (o o 51)82 € B?(Gy,GhY).

Proof. Since G4 is a centerless perfect group, it follows that A(G2) = {idg, }
[9]. Therefore, the result follows directly from Proposition 3.2. g

Let G2 be a finite group such that 7(G2) = {p1,p2,...,pr}. Let Go; be
a Sylow p;-subgroup of Gy for each 1 < i < k. Then, we have the following
result.
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Proposition 5.3. Suppose that all of the sylow subgroups of Go are of maz-

imal class such that log,, |Gai| > 4 for all 1 < i < k. Then, the perturbed

direct products G1 X Gy and G1 X Go are upper A-isomorphic if and only if
€1 €2

they are upper c-isomorphic.

Proof. Assume that G; X Gy and G X G4 are A-isomorphic by an isomor-
€1 €2

Y11 P12

1 2
of G is normalized by A(G3). Therefore, we have Resg,,(p22) € A(G2)
for all 1 < i < k. Using the assumptions and [5, Theorem 3.4], we get
A(Ga;) = Aut(Gy;) for all 1 <4 < k. Hence, by [4, Remark 4.3], we have
P99 € Aut.(G). Thus, Gy >< G9 and G4 >< G are upper c-isomorphic. The

phism ¢ = < > By [4, Remark 4.2 (ii)], each Sylow subgroup

other direction is clear since Autc(Gg) is a subset of A(G2). O
With the notations that preceded Theorem 3.3, we obtain the following
proposition.

Proposition 5.4. Let G2 be a finite nilpotent group which acts trivially on
an abelian torsion group G1. If all the sylow subgroups of Go are of coclass
at most two, then the perturbed direct products G >< Gy and G4 >< Gy are

upper A-isomorphic if and only if Gip, >< Ggl (md Glp X Go; are upper
€24

A-isomorphic for all 1 <i < k.

Proof. Indeed, by Lemma 4.2, if the groups Gy, >< Ga; and Gip, >< G9; are

upper A- 1somorph1c then there exist o € Aut(Gl) p € A(Ga) Such that
(o0e1)(e5  o(pxp)) € B%(Ga,G1). Clearly, we have p; = resa,,(p) € A(Ga;)
and U, = rescy,, (0) € Aut(Gip,) for all 1 < ¢ < k. Hence, resg,,((o o
e1)(e3 o (pxp))) = (oio 511)(5511 o (pi x pi)) € B2(G217G1p1) This proves
the only if direction. For the converse, suppose that the groups Gy, >< Go;
and Gy, >< Go; are upper A-isomorphic for all 1 < i < k. By Propos1t10n

4.5, the groups G1 >< Go and G1 x G are isomorphic by an isomorphism
€2

o= < ({ Z > such that p = (p;)1<i<k € Aut(G2) where p; € A(G2). By

[2, Corollary 3.4], we have A(G2) = []F_, A(Ga;). Thus p € A(G2) and then
G1 x G9 and Gy x Gy are upper A-isomorphic. O
€1 €2
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